The Structure of $\left(\mathbf{N H}_{4}\right)_{3} \mathbf{C l S}_{\mathbf{2}} \mathbf{O}_{6}$

By R.J.Gutrormson* and E.Stanley
Department of Physics, University of Saskatchewan, Regina Campus, Regina, Saskatchewan, Canada

(Received 14 May 1968)

Abstract

The crystal structure of $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{ClS}_{2} \mathrm{O}_{6}$ has been determined. The cell dimensions are $a=12.64$, $b=12.48, c=6.08 \AA$ and the space group is Pbam. The structure is pseudo-tetragonal and is isostructural with the mixed salts $\mathrm{NaK}_{5} \mathrm{Cl}_{2}\left(\mathrm{~S}_{2} \mathrm{O}_{6}\right)_{2}$ and $\mathrm{NaK}_{2} \mathrm{ClS}_{2} \mathrm{O}_{6}$.

Introduction

A mixed salt of ammonium dithionate and ammonium chloride has been described by Foch \& Klus (1888). It turns out to be the compound $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{ClS}_{2} \mathrm{O}_{6}$. There are two other known compounds of the general formula $\mathrm{R}_{3} \mathrm{ClS}_{2} \mathrm{O}_{6}$, where R is one or more monovalent cations. These were described by Buckley (1951) and analysed in detail by Stanley (1953). Their formulae were $\mathrm{NaK}_{5} \mathrm{Cl}_{2}\left(\mathrm{~S}_{2} \mathrm{O}_{6}\right)_{2}$ and $\mathrm{NaK}_{2} \mathrm{ClS}_{2} \mathrm{O}_{6}$. The two compounds were very similar in structure.

Experimental

Ammonium dithionate was prepared from equimolar solutions of ammonium sulphate and barium dithionate. The barium sulphate was removed by filtering and an equimolar solution of ammonium chloride added to the filtrate. The crystals which formed on evaporation were unlike those of either ammonium chloride, barium dithionate or ammonium dithionate. The crystals were badly formed needles.

Precession and Weissenberg photographs demonstrate that the crystal is orthorhombic and the systematic absences, $0 k l$ with k odd and $h 0 l$ with h odd indicate that the space group is either Pba2 or Pbam. The crystals did not exhibit a measurable piezo-electric effect. The unit-cell dimensions are $a=12 \cdot 64 \pm$ $0.04, \quad b=12.48 \pm 0.04, \quad c=6.08 \pm 0.06 \AA$. The calculated volume of the unit cell is $959 \cdot 1 \AA^{3}$ and the density, measured by flotation is $1.71 \pm 0.1 \mathrm{~g} . \mathrm{cm}^{-3}$. There is only one possible formula for the unit-cell contents to satisfy these measurements; this is: $4\left[\left(\mathrm{NH}_{4}\right)_{3} \mathrm{ClS}_{2} \mathrm{O}_{6}\right]$.

The intensities of the reflexions in the [001] and the [010] zones were recorded on multiple film Weissenberg photographs with $\mathrm{Cu} K \alpha$ radiation, and were estimated visually. The crystals were small and ill formed and no correction was made for absorption. The intensities were put on an approximate absolute scale using the method of Wilson (1942).

* Present address: Department of Physics, University of York, U.K.

Determination of the structure

The Patterson projection on (001) gave a very good idea of the orientation of the dithionate ions and of the position of the chlorine ions. A trial structure was postulated with the dithionate ion lying on twofold axes in two non-equivalent sets of positions at 0,0 and $\frac{1}{2}, \frac{1}{2}$ and at $\frac{1}{2}, 0$ and $0, \frac{1}{2}$. The chlorine ion was put at $\frac{1}{4}, \frac{1}{4}$. The phases of the structure factors were calculated using the positions of these ions only, and a synthesis of the projection of the electron density calculated using these phases showed the main features of the structure. One of the ammonium ions appeared to be coincident (in projection) with the chlorine ion at $\frac{1}{4}, \frac{1}{4}$. Refinement of this projection was continued using difference syntheses (Cochran, 1951) until the residual, $R=\Sigma| | F_{o}\left|-\left|F_{c}\right|\right| / \Sigma\left|F_{o}\right|$, was reduced to $0 \cdot 20$.
The projection on (010) was assumed to be centrosymmetric (i.e. space group Pbam) and using the x coordinates for the projection on (001) and packing considerations, a satisfactory set of initial coordinates was determined. There is a great deal of overlap in this projection and refinement by Fourier and differenceFourier syntheses would be slow and uncertain.
The final refinement of both projections was completed using the method of Bhuiya \& Stanley (1963). The residuals were reduced to 0.18 and 0.14 in the projections on (001) and (010) respectively, and the final general isotropic temperature coefficients were $4 \cdot 1 \AA^{2}$ and $3 \cdot 7 \AA^{2}$. The analytical scattering factors of Forsyth \& Wells (1959) were used throughout the calculations. The final coordinates are given in Table 1, and the observed and final calculated structure factors in Table 2.

Table 1. Final fractional atomic coordinates

	x	y	z
	0.247	0.262	0.500
Cl^{-}	0.415	0.482	0.000
\mathbf{S}	0.476	0.081	0.000
$\mathrm{~S}(1)$	0.356	0.075	0.000
$\mathrm{O}(1)$	0.518	0.126	0.218
$\mathrm{O}(2)$	0.423	0.367	0.000
$\mathrm{O}\left(1^{\prime}\right)$	0.380	0.532	0.211
$\mathrm{O}\left(2^{\prime}\right)$	0.313	0.006	0.500
$\mathrm{NH}_{4}{ }^{+}$	0.3		
$\mathrm{NH}_{4}{ }^{+}$	0.497	0.315	0.500
$\mathrm{NH}_{4}{ }^{+}$	0.217	0.245	0.000

Table 2. Observed and final calculated structure factors

h	R	ℓ	$1 F_{0} / F_{c}$	h	k		$\left\|F_{0}\right\| \quad F_{5}$	h	k	$?$	\|F $F_{0} F_{c}$	h k	ℓ	$\left\|F_{c}\right\| \quad F{ }_{c}$		k		h	R	i	151	
2	0	0	7372	2	3	0	$49 \quad 42$	1	6	0	10-23	0 9	0	<2		12	0<2-	c	\bigcirc			
4	0	0	5354	3	3	0	99	2	6	0	2933	19	0	2-2		12	$0<2-2$	2	0	2		- 3!
6	0	0	17-17	4	3	0	55	3	6	0	28-35	29	0	$2-\mathrm{i} 2$		12	056	4	0	2	48	
8	0	0	5454	5	3	0	51-39	4	6	0	57-51	39	0	5-6		12	$03-$ I	6	0	2		- 30
10	0	0	411	6	3	0	3130		6	0	2113	4.9	0	37		12	0 - -3	δ	0	2		3
12	0	0	1516	7	3	0	55	6	6	0	$4-3$	59	0	19-20	101	12	$03-4$	10	0	2		
1%	0	0	4-4	3	3	0	5-2	7	6	0	11-20	69	0	9-7				12	0	2	24	
				9	3	0	815	8	6	0	32-2i	79	0	9-11		13	$0<20$	14	0	2	<2	2
0	1	0	<10	10	3	0	64	9	6	0	9-15	59	0	22-23		13	$012-12$					
1	1	0	21	11	3	0	<2 1	10	6	0	25 2\%	99	0	3-5		23	063	0	0	3	5	\bigcirc
2	1	0	14.15	12	3	0	2-2	12	6	0	17-1is	109	0	32-31		13	032	2	0		54	
3	1	0	52-50	13	3	0	53	12	6	0	9 '7	119	0	<2 0		13	089	4	0	3		- 30
4	1	0	3936	14	3	0	118	13	6	0	43	129	0	7-6		13	0 - -	6	0	3		- 5
5	1	0	$132-117$					14	6	0	113	139	0	22		13	045	δ	0	3		- 32
6	1	0	9-13	0	4	0	5858									13	$0 \quad 4-5$	10	0	3	10	
7	1	0	48-12	1	4	0	47-53	0	7	0	<10	010	0	2-5		13	$0<2 \quad \hat{j}$	12	0	3	<2	
8	1	0	99	2	4	0	122-120	1	7	0	34.3%	110	0	21.19		13	0 - 2	14	0	3	12	13
9	1	0	219	3	4	0	19-25	2	7	0	1-7	210	0	$24 \quad 22$								
10	1	0	4-10	4	4	0	22-26	3	7	0	3-3	310	0	1814		14	0 2-1	0	0		140	
11	1	0	1612	5	4	0	2	4	7	0	0-	410	0	6-5		14	065	2	0	t	9	
12	1	0	33	6	4	0	63-63	5	7	0	25-3i	510	0	3631		1.	0134	5	0	4	32	
13	1	0	1210	7	4	0	9-4	6	7	0	20-2i	610	0	1213		1.	0 - - 5	6	0	4		- 13
14	1	0	41	S	4	0	<21	7	7	0	6-9	710	0	<22		14	$02-1$	3	0	4	11	
15	1	0	64	9	4	0	49-39	8	7	0	10-13	810	0	6-11		14	04	10	0	4	<2	
16	1	0	33	10	4	0	6-7	9	7	0	$<2-$	910	0	89		14	055	12	0	4	13	
				11	4	0	16-15	10	7	0	13-9	1010	0	9.5		14	- 13-12					
0	2	0	6071	12	4	0	258	11	7	0	0-4	1110	0	2-4				0	0	5	40	
1	2	0	8-3	13	4	0	5-13	12	7	0	5-2					15	$0<2 \quad 0$	2	0		47	
2	2	0	$94 \quad 93$					13	7	0	3 3	017	0	<20		15	$04-7$	4	0	5		- 20
3	2	0	<10	0	5	0	<2 0	14	7	0		11.1	0	5-6		15	0219	6	0	5	4	
4	2		149-121	1	5	0	99102					211	0	4-1		15	$0<2 \quad 1$	5	0	5		3
5	2	0	3138	2	5	0	<2-11	0	8	0	4940	321	0	2. 10		15	075	10	0	5	12	
6	2	0	$15 \quad 15$	3	5	0	$46 \quad 46$	7	8	0	8-9	421	0	<20			$03-2$	12	0	5	9	
7	2	0	13-7	4	5	0	$23 \quad 22$	2	B	0	20-19	517	0	<24								
8	2	0	22-18	5	5	0	22	3	ε	0	$32 \quad 29$	617	0	<25		16	044	0	,	6	54	
9	2	0	26-20	6	5	0	1919	4	8	0	$10 \quad 17$	717	0	<2 1		16	-3-3	2	0	6	<2	
10	2	0	$20 \quad 20$	7	5	0	$15 \quad 25$	5	8	0	15 15	$\varepsilon 11$	0	19-17				4	0	6	15	
11	2	0	15-11	3	5	0	$25 \quad 27$	6	S	0	32-29	911	0	- 3	0		1107107	6	0	6		11
I?	2	0	7-10	9	5	0	1313	7	8	0	1920	1012	0	12-14	2		1108122	5	0	6	4	
13	2	0	28	10	5	0	<2-1	8	8	0	3-2	1211	0	3			$159-53$					
1.4	2	0	64	11	5	0	33	9	8	0	6-9						$12-2$	0	0	7	<2	
15	2	-	<10	12	5	0	35	10	S	0	<20	012	,				I 22-22	2	0	7	19	
16	2	0	6-5	13	5	0	3	11	δ	0		112	0	6-6	10	0	$1 \begin{array}{lll}1 & 16 & 17\end{array}$	4	0	7		
				14	5	0	77	12	8	0	1613	212	0	4-9		0	$112-5$					
0	3	0	<1 0					13	8	-		312	-	$19 \quad 15$			$1 \begin{array}{lll}13 & 13\end{array}$					
1	3	0	4255	0	6	0	$24-25$	14	δ	0	1-	412	0	1512	16	0	1 20-17					

Discussion

The accuracy of the bond lengths given in Table 3 was determined from the figures given by Stanley (1964, 1965) relating the standard deviation of a coordinate to the residual. Although these figures relate to an all carbon atom structure a good approximation in a structure containing a variety of atoms should be obtained by weighting the standard deviation of the coordinates of the atoms according to the inverse of their atomic number. The dimensions of the dithionate ion given in Table 3 are compared with other determinations in Table 4.

Table 3. Dimensions of the dithionate ion

Bond	Ion $1(\AA)$	Ion $2(\AA)$
$\mathbf{S}-\mathbf{S}$	2.13 ± 0.04	2.16 ± 0.04
$\mathbf{S}-\mathrm{O}(1)$	1.41 ± 0.06	1.44 ± 0.06
$\mathbf{S}-\mathrm{O}(2)$	1.53 ± 0.06	1.50 ± 0.06
$\mathbf{O (1) - O (2)}$	2.45 ± 0.07	2.47 ± 0.07
$\mathrm{O}(2)-\mathrm{O}(2)$	2.65 ± 0.07	2.57 ± 0.07

The chlorine ions are octahedrally coordinated to six ammonium ions with an average distance of $3 \cdot 2 \AA$ (variation 3.08 to $3.34 \AA$) and to eight oxygen atoms from the dithionate ions, in the form of a distorted cube, at an average distance of $3.87 \AA$ (variation 4.11 to $3 \cdot 69 \AA$).

The crystal is isostructural with the salts in the series previously investigated. Table 5 gives the unit-cell dimensions and the space groups of the three materials, in the same orientation, for comparison, and projections of the three structures in the same orientation are given in Fig.1.

Note added in proof: - The results given in this paper appear to verify those of Alvarez, Sotoca \& Verdier (1966), which were not known to the present authors until the paper was about to appear in print.

The authors are grateful to the University of Saskatchewan and the National Research Council for financial assistance in the purchase of equipment and for the use of the computing facilities. One of us (R.J.G.)

Table 4. Comparison with other determinations
Mean length

	(1)	(2)	(3)	(4)	(5)	(6)
Bond	2.15 ± 0.03	2.08 ± 0.04	2.15 ± 0.0	2.16	2.17	2.08
S-S	2.15 ± 0.04	1.48 ± 0.06	1.43 ± 0.05	1.45	1.47	1.50

(1) Present work.
(2) Stanley (1953).
(3) Stanley (1956).
(4) Martinez, Garcia-Blanco \& Rivoir (1950).
(5) Garcia-Blanco, Gomis \& Abbad (1953).
(6) Barnes \& Wendling (1938).

(a)

(b)

(c)

Fig. 1. The structures of (a) $\mathrm{NaK}_{5} \mathrm{Cl}_{2}\left(\mathrm{~S}_{2} \mathrm{O}_{6}\right)_{2}$, (b) $\mathrm{NaK}_{2} \mathrm{ClS}_{2} \mathrm{O}_{6}$ and (c) $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{ClS}_{2} \mathrm{O}_{6}$ projected on to the (001) face. The edges of the true unit-cells are indicated in each structure.

Table 5. Unit-cell dimensions and space groups of the isostructural salts

Salt		b	c	Space group
$\mathrm{NaK}_{5} \mathrm{Cl}_{2}\left(\mathrm{~S}_{2} \mathrm{O}_{6}\right)_{2}$	8.562	8.562	11.529	$P 4 / m n c$
$\mathrm{Reoriented}^{\mathrm{NaK}_{2} \mathrm{ClS}_{2} \mathrm{O}_{6}}$	12.107	12.107	11.529	$C 4 / m c n$
$\left(\mathrm{NH}_{4}\right)_{3} \mathrm{ClS}_{2} \mathrm{O}_{6}$	12.118	12.118	5.522	$P 4 / n$
	12.64	12.48	6.08	$P b a m$

wishes to thank the University of Saskatchewan for the award of a teaching assistantship during the tenure of which much of the work was done.

References

Alvarez, Sotoca, \& Verdier(1966). An. Real Soc. esp. Fís. Quim. 62A, 285.
Barnes, W. H. \& Wehdling, A. V. (1938). Z. Kristallogr. 99, 153.
Bhutya, A. K. \& Stanley, E. (1963). Acta Cryst. 16, 981. Buckley, H. E. (1951). Crystal Growth. London: Chapman \& Hall.

Cochran, W. (1951). Acta Cryst. 4, 408.
Fock, A. \& Klus, K. (1888). Ber. dtsch. chem. Ges. 246, 179.

Forsyth, J. B. \& Wells, M. (1959). Acta Cryst. 12, 412.
Garcia-Blanco, S., Gomis, V. \& Abbad, M. (1953). An. Soc. esp. Fís. Quím. A3-4, 114.
Martinez, S., Garcia-Blanco, S. \& Rivoir, L. (1956). Acta Cryst. 9, 145.
Stanley, E. (1953). Acta Cryst. 6, 187.
Stanley, E. (1956). Acta Cryst. 9, 897.
Stanley, E. (1964). Acta Cryst. 17, 1028.
Stanley, E. (1965). Acta Cryst. 19, 1055.
Wilson, A. J. C. (1942). Nature, Lond. 150, 151.

The Crystal Structure of $\mathbf{P O B r}_{3}$ and Intermolecular Bonding

By K. Olie
Laboratory for Inorganic Chemistry, University of Amsterdam, The Netherlands
and F.C. Mijlhoff
Laboratory for Organic Chemistry, University of Leiden, The Netherlands

(Received 5 June 1968)

Crystals of POBr_{3} are orthorhombic, space group $\mathrm{Pn}_{2} a$. The unit cell with dimensions $a=9 \cdot 467, b=$ $9 \cdot 938, c=6 \cdot 192 \AA$ contains four molecules. The structure was determined by vector analysis and refined by the least-squares method from photometered $\mathrm{Cu} K \alpha$ data. The average $\mathrm{P}-\mathrm{Br}$ distance is $2.14 \AA$, the $\mathrm{P}-\mathrm{O}$ distance is $1.44 \AA$. The molecules form infinite chains by means of intermolecular $\mathrm{Br}-\mathrm{O}$ bonds with a length of $3.08 \AA$.

Introduction

Raman spectra of solid POBr_{3} and POCl_{3} show an extra vibration line in the vicinity of the $\mathrm{P}-\mathrm{O}$ stretching frequency (Smitskamp, Olie \& Gerding, 1968). Since this vibration is non-degenerate in the free molecule the apparent splitting cannot be explained by the assumption of lower site symmetry in the crystal. In order to check our suspicion that strong intermolecular interactions might exist we started the present crystal structure determination.

Experimental

The crystals of POBr_{3} are colourless and rapidly attacked by atmospheric moisture. Nearly spherical crystals with a diameter of 0.02 cm were selected and inserted into thin walled glass capillaries with the directions
defined as [100], [011] and [001] parallel to the capillary axis. Zero-level Weissenberg photographs (Cu radiation) about [100] and [0피] were superposed with Al powder lines for calibration purposes. Carefully measured glancing angles corresponding to $O k l$ and $h k k$ reflexions were used to determine the unit-cell dimensions by a least-squares procedure (Table 1). The listed errors correspond to three times the standard deviations.

Table 1. Crystal data of POBr_{3}
Cell dimensions: $a=9.467 \pm 0.006$ $b=9.938 \pm 0.006$ $c=6.192 \pm 0.003$
Space group: $\mathrm{Pn}_{1}{ }_{1} a$
Number of molecules per cell: $Z=4$
Calculated density: $3 \cdot 27 \mathrm{~g} . \mathrm{cm}^{-3}$
Absorption coefficient: $\mu=307 \mathrm{~cm}^{-1}$

